ExoELISA-ULTRA Complete Kit (CD63 Detection)

With a 4-hour total assay time, this sensitive ELISA-based assay speeds quantitation of exosomes from most biofluids
  • Sensitive—detect as little as 1 µg protein equivalent
  • Fast—complete in less than 4-hours—no more overnight incubation
  • Flexible—compatible with all major exosome isolation methods (e.g. ExoQuick®, ultracentrifugation, ultrafiltration, and immunoaffinity capture) from human samples
  • Quantitative—calibrated internal standards enable quantitation of exosomes carrying CD63
  • Sample-saving—requires significantly less sample than our standard ExoELISA Kit, leaving more for other downstream applications

Products

Catalog Number Description Size Price Quantity Add to Cart
EXEL-ULTRA-CD63-1 ExoELISA-ULTRA Complete Kit (CD63 detection) 96 Reactions $649
- +

Overview

Overview

Delivering ELISA-based exosome quantitation ULTRA fast

Improving on our popular ExoELISA Kits, the ExoELISA-ULTRA CD63 Kit increases the sensitivity of exosome detection—as low as 1 µg protein equivalent—while shortening the total assay time to only 4 hours.

Currently configured for detection of CD63, a widely recognized and popular exosomal marker1, ExoELISA-ULTRA CD63 is based on an ultra-sensitive, direct capture, colorimetric ELISA assay that is compatible with nearly all biofluids. The ExoELISA-ULTRA CD63 Kit comes with an internal standard calibrated to exosomes from a range of biofluids. Calibration is achieved by NanoSight analysis and enables quantitation of exosomes carrying CD63 in your target samples. One ExoELISA-ULTRA CD63 Kit contains all of the necessary reagents (including assay plate) to perform up to 96 reactions.

  • Sensitive—detect as little as 1 µg protein equivalent
  • Fast—complete in less than 4-hours—no more overnight incubation
  • Flexible—compatible with all major exosome isolation methods (e.g. ExoQuick®, ultracentrifugation, ultrafiltration, and immunoaffinity capture) from human samples
  • Quantitative—calibrated internal standards enable quantitation of exosomes carrying CD63
  • Sample-saving—requires significantly less sample than our standard ExoELISA Kit, leaving more for other downstream applications
Choose the exosome quantitation method that’s best for your studies
 ExoELISA-ULTRA Complete KitsEXOCETFluoroCet
UseFor fast and sensitive antibody-based quantitation of exosomesFor fast quantitation of extracellular vesicles with moderate sample input requirementsFor the most sensitive quantitation of extracellular vesicles with very low sample input requirements
Detection methodAntibodyEnzymaticEnzymatic
Quantitation chemistryEnzymatic (HRP)ColorimetricFluorescent
Total protocol time4 hours (no overnight incubation)20 min60 min
Input sample amount (protein equivalent)1 – 200 µg50 µg<1 µg
Learn MoreExoELISA-ULTRA CD63
ExoELISA-ULTRA CD81
ExoELISA-ULTRA CD9
EXOCETFluoroCet
REFERENCES
  1. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016. February 23. 113(8): E968–E977. PMCID: PMC4776515.

How It Works

Supporting Data

Supporting Data

The standard curve for ExoELISA-ULTRA CD63 shows robust linearity down to ~1 x 109 exosomes. The standard curve for ExoELISA-ULTRA CD63 provides robust linearity down to ~1 x 10^9 exosomes.

FAQs

Resources

Citations

  • Pallares-Rusiñol, A, et al. (2023) Advances in exosome analysis. Advances in clinical chemistry. 2023; 112:69-117. PM ID: 36642486
  • Lee, S, et al. (2023) Mesenchymal stem cell-derived extracellular vesicles subvert Th17 cells by destabilizing RORγt through posttranslational modification. Experimental & molecular medicine. 2023;. PM ID: 36964252
  • Cai, J, et al. (2023) Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear. The American journal of sports medicine. 2023; 51(5):1267-1276. PM ID: 36917828
  • Otahal, A, et al. (2023) Extracellular Vesicle Isolation and Characterization for Applications in Cartilage Tissue Engineering and Osteoarthritis Therapy. Methods in molecular biology (Clifton, N.J.). 2023; 2598:123-140. PM ID: 36355289
  • Guo, Q, et al. (2023) Glioblastoma upregulates SUMOylation of hnRNP A2/B1 to eliminate the tumor suppressor miR-204-3p, accelerating angiogenesis under hypoxia. Cell death & disease. 2023; 14(2):147. PM ID: 36810326
  • von Stade, DP, et al. (2023) Exosome cell origin affects in vitro markers of tendon repair in ovine macrophages and tenocytes. Tissue engineering. Part A. 2023;. PM ID: 36792933
  • Pradhan, A, et al. (2023) Association of exosomal miR-96-5p and miR-146a-5p with the disease severity in dengue virus infection. Journal of medical virology. 2023; 95(3):e28614. PM ID: 36840403
  • Meliciano, A, et al. (2023) Clinically Expired Platelet Concentrates as a Source of Extracellular Vesicles for Targeted Anti-Cancer Drug Delivery. Pharmaceutics. 2023; 15(3). PM ID: 36986815
  • Cui, H, et al. (2023) Effect of Hypertrophic Scar Fibroblast-Derived Exosomes on Keratinocytes of Normal Human Skin. International Journal of Molecular Sciences. 2023; 24(7):6132. Link: International Journal of Molecular Sciences
  • Shen, S, et al. (2023) Effects of lysate/tissue storage at -80°C on subsequently extracted EVs of epithelial ovarian cancer tissue origins. iScience. 2023;:106521. Link: iScience
  • Nair, A, et al. (2023) Hybrid Nanoparticle System Integrating Tumor-Derived Exosomes and Poly(amidoamine) Dendrimers: Implications for an Effective Gene Delivery Platform. Chemistry of Materials. 2023; 35(8):3138-3150. Link: Chemistry of Materials
  • Da Fonseca Ferreira, A, et al. (2023) HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs. International journal of molecular sciences. 2023; 24(8). PM ID: 37108729
  • Liu, C, et al. (2023) Exosomes from bone marrow mesenchymal stem cells are a potential treatment for ischemic stroke. Neural regeneration research. 2023; 18(10):2246-2251. PM ID: 37056144
  • Jiang, Q, et al. (2023) Effects of Plasma-Derived Exosomal miRNA-19b-3p on Treg/T Helper 17 Cell Imbalance in Behçet’s Uveitis. Investigative ophthalmology & visual science. 2023; 64(4):28. PM ID: 37093132
  • Bolumar, D, et al. (2023) Vertical transmission of maternal mitochondrial DNA through extracellular vesicles modulates embryo bioenergetics. bioRxiv. 2023;. Link: bioRxiv
  • Nagai, M, et al. (2023) Blood biomarkers in Takotsubo syndrome point to an emerging role for inflammaging in disease pathophysiology. medRxiv. 2023;. Link: medRxiv
  • Park, W, et al. (2023) Hydrogel Microneedles Extracting Exosomes for Early Detection of Colorectal Cancer. Biomacromolecules. 2023;. Link: Biomacromolecules
  • Roma-Rodrigues, C, Fernandes, A & Baptista, P. (2023) Exploring RAB11A Pathway to Hinder Chronic Myeloid Leukemia-Induced Angiogenesis In Vivo. Pharmaceutics. 2023; 15(3):742. Link: Pharmaceutics
  • Gandham, SK, Attarwala, HZ & Amiji, MM. (2022) Mathematical Modeling and Experimental Validation of Extracellular Vesicle-Mediated Tumor Suppressor MicroRNA Delivery and Propagation in Ovarian Cancer Cells. Molecular pharmaceutics. 2022;. PM ID: 36226722
  • Bazoer, J. (2022) Regulatory T Cell Derived EVs-Designing Novel Immune Based Therapies to Prolong Lifespan of Transplanted Tissue. Thesis. 2022;. Link: Thesis

Products

Catalog Number Description Size Price Quantity Add to Cart
EXEL-ULTRA-CD63-1 ExoELISA-ULTRA Complete Kit (CD63 detection) 96 Reactions $649
- +

Overview

Overview

Delivering ELISA-based exosome quantitation ULTRA fast

Improving on our popular ExoELISA Kits, the ExoELISA-ULTRA CD63 Kit increases the sensitivity of exosome detection—as low as 1 µg protein equivalent—while shortening the total assay time to only 4 hours.

Currently configured for detection of CD63, a widely recognized and popular exosomal marker1, ExoELISA-ULTRA CD63 is based on an ultra-sensitive, direct capture, colorimetric ELISA assay that is compatible with nearly all biofluids. The ExoELISA-ULTRA CD63 Kit comes with an internal standard calibrated to exosomes from a range of biofluids. Calibration is achieved by NanoSight analysis and enables quantitation of exosomes carrying CD63 in your target samples. One ExoELISA-ULTRA CD63 Kit contains all of the necessary reagents (including assay plate) to perform up to 96 reactions.

  • Sensitive—detect as little as 1 µg protein equivalent
  • Fast—complete in less than 4-hours—no more overnight incubation
  • Flexible—compatible with all major exosome isolation methods (e.g. ExoQuick®, ultracentrifugation, ultrafiltration, and immunoaffinity capture) from human samples
  • Quantitative—calibrated internal standards enable quantitation of exosomes carrying CD63
  • Sample-saving—requires significantly less sample than our standard ExoELISA Kit, leaving more for other downstream applications
Choose the exosome quantitation method that’s best for your studies
 ExoELISA-ULTRA Complete KitsEXOCETFluoroCet
UseFor fast and sensitive antibody-based quantitation of exosomesFor fast quantitation of extracellular vesicles with moderate sample input requirementsFor the most sensitive quantitation of extracellular vesicles with very low sample input requirements
Detection methodAntibodyEnzymaticEnzymatic
Quantitation chemistryEnzymatic (HRP)ColorimetricFluorescent
Total protocol time4 hours (no overnight incubation)20 min60 min
Input sample amount (protein equivalent)1 – 200 µg50 µg<1 µg
Learn MoreExoELISA-ULTRA CD63
ExoELISA-ULTRA CD81
ExoELISA-ULTRA CD9
EXOCETFluoroCet
REFERENCES
  1. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016. February 23. 113(8): E968–E977. PMCID: PMC4776515.

How It Works

Supporting Data

Supporting Data

The standard curve for ExoELISA-ULTRA CD63 shows robust linearity down to ~1 x 109 exosomes. The standard curve for ExoELISA-ULTRA CD63 provides robust linearity down to ~1 x 10^9 exosomes.

FAQs

Citations

  • Pallares-Rusiñol, A, et al. (2023) Advances in exosome analysis. Advances in clinical chemistry. 2023; 112:69-117. PM ID: 36642486
  • Lee, S, et al. (2023) Mesenchymal stem cell-derived extracellular vesicles subvert Th17 cells by destabilizing RORγt through posttranslational modification. Experimental & molecular medicine. 2023;. PM ID: 36964252
  • Cai, J, et al. (2023) Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear. The American journal of sports medicine. 2023; 51(5):1267-1276. PM ID: 36917828
  • Otahal, A, et al. (2023) Extracellular Vesicle Isolation and Characterization for Applications in Cartilage Tissue Engineering and Osteoarthritis Therapy. Methods in molecular biology (Clifton, N.J.). 2023; 2598:123-140. PM ID: 36355289
  • Guo, Q, et al. (2023) Glioblastoma upregulates SUMOylation of hnRNP A2/B1 to eliminate the tumor suppressor miR-204-3p, accelerating angiogenesis under hypoxia. Cell death & disease. 2023; 14(2):147. PM ID: 36810326
  • von Stade, DP, et al. (2023) Exosome cell origin affects in vitro markers of tendon repair in ovine macrophages and tenocytes. Tissue engineering. Part A. 2023;. PM ID: 36792933
  • Pradhan, A, et al. (2023) Association of exosomal miR-96-5p and miR-146a-5p with the disease severity in dengue virus infection. Journal of medical virology. 2023; 95(3):e28614. PM ID: 36840403
  • Meliciano, A, et al. (2023) Clinically Expired Platelet Concentrates as a Source of Extracellular Vesicles for Targeted Anti-Cancer Drug Delivery. Pharmaceutics. 2023; 15(3). PM ID: 36986815
  • Cui, H, et al. (2023) Effect of Hypertrophic Scar Fibroblast-Derived Exosomes on Keratinocytes of Normal Human Skin. International Journal of Molecular Sciences. 2023; 24(7):6132. Link: International Journal of Molecular Sciences
  • Shen, S, et al. (2023) Effects of lysate/tissue storage at -80°C on subsequently extracted EVs of epithelial ovarian cancer tissue origins. iScience. 2023;:106521. Link: iScience
  • Nair, A, et al. (2023) Hybrid Nanoparticle System Integrating Tumor-Derived Exosomes and Poly(amidoamine) Dendrimers: Implications for an Effective Gene Delivery Platform. Chemistry of Materials. 2023; 35(8):3138-3150. Link: Chemistry of Materials
  • Da Fonseca Ferreira, A, et al. (2023) HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs. International journal of molecular sciences. 2023; 24(8). PM ID: 37108729
  • Liu, C, et al. (2023) Exosomes from bone marrow mesenchymal stem cells are a potential treatment for ischemic stroke. Neural regeneration research. 2023; 18(10):2246-2251. PM ID: 37056144
  • Jiang, Q, et al. (2023) Effects of Plasma-Derived Exosomal miRNA-19b-3p on Treg/T Helper 17 Cell Imbalance in Behçet’s Uveitis. Investigative ophthalmology & visual science. 2023; 64(4):28. PM ID: 37093132
  • Bolumar, D, et al. (2023) Vertical transmission of maternal mitochondrial DNA through extracellular vesicles modulates embryo bioenergetics. bioRxiv. 2023;. Link: bioRxiv
  • Nagai, M, et al. (2023) Blood biomarkers in Takotsubo syndrome point to an emerging role for inflammaging in disease pathophysiology. medRxiv. 2023;. Link: medRxiv
  • Park, W, et al. (2023) Hydrogel Microneedles Extracting Exosomes for Early Detection of Colorectal Cancer. Biomacromolecules. 2023;. Link: Biomacromolecules
  • Roma-Rodrigues, C, Fernandes, A & Baptista, P. (2023) Exploring RAB11A Pathway to Hinder Chronic Myeloid Leukemia-Induced Angiogenesis In Vivo. Pharmaceutics. 2023; 15(3):742. Link: Pharmaceutics
  • Gandham, SK, Attarwala, HZ & Amiji, MM. (2022) Mathematical Modeling and Experimental Validation of Extracellular Vesicle-Mediated Tumor Suppressor MicroRNA Delivery and Propagation in Ovarian Cancer Cells. Molecular pharmaceutics. 2022;. PM ID: 36226722
  • Bazoer, J. (2022) Regulatory T Cell Derived EVs-Designing Novel Immune Based Therapies to Prolong Lifespan of Transplanted Tissue. Thesis. 2022;. Link: Thesis