PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector

Combining easy PiggyBac transgenesis with our robust and titratable cumate-inducible expression system, this PiggyBac Vector is designed for cDNA expression

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers

Products

Catalog Number Description Size Price Quantity Add to Cart
PBQM812A-1 PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector 10 µg $1003
- +

Overview

Overview

Robust, titratable gene expression delivered using the PiggyBac Transposon System

More than just easy, consistent transgenesis with PiggyBac, the PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector (Cat.# PBQM812A-1) adds in the robust and titratable gene expression control of SBI’s cumate-inducible expression system. Clone your gene-of-interest into the MCS for cumate-inducible expression, which you can quantitatively monitor with the co-expressed GFP. This vector also co-expresses the cumate repressor, CymR, and puromycin resistance from the EF1α promoter. PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector With the PiggyBac Transposon System, you can:

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements

Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a four-month, limited-use license to evaluate the technology.

For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Hera BioLabs, Inc.

How It Works

How It Works

The PiggyBac Transposon System’s Cut-and-Paste Mechanism

The efficient PiggyBac Transposon System uses a cut-and-paste mechanism to transfer DNA from the PiggyBac Vector into the genome. If only temporary genomic integration is desired, the Excision-only PiggyBac Transposase can be transiently expressed for footprint-free removal of the insert, resulting in reconstitution of the original genome sequence.

The PiggyBac Transposon System’s cut-and-paste mechanism

Figure 1. The PiggyBac Transposon System’s cut-and-paste mechanism.

  • The Super PiggyBac Transposase binds to specific inverted terminal repeats (ITRs) in the PiggyBac Cloning and Expression Vector and excises the ITRs and intervening DNA.
  • The Super PiggyBac Transposase inserts the ITR-Expression Cassette-ITR segment into the genome at TTAA sites.
  • The Excision-only Super PiggyBac Transposase can be used to remove the ITR-Expression Cassette-ITR segment from the genome, for footprint-free removal

Tightly-controlled, inducible gene expression

Get robust, titratable gene expression with low background using SBI’s cumate-inducible vectors. These vectors take advantage of CymR, a repressor that binds to cumate operator sequences (CuO) with high affinity in the absence of cumate, a non-toxic small molecule. Providing much lower background expression than similar systems, SBI’s cumate-inducible vectors can provide up to 32-fold induction of gene expression.How the cumate operator switch works

  • Robust—increase expression up to 32-fold
  • Adjustable—tune expression levels by titrating the amount of cumate
  • Reversible—turn expression on, then off, then on again
  • Powerful—suitable for in vivo applications

Supporting Data

Supporting Data

Tight expression control with low background

In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression

Figure 2. In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression.

The PiggyBac cumate switch is titratable and can be turned off

Figure 3. The PiggyBac cumate switch is titratable and can be turned off.

Resources

Citations

  • Uchino, S, et al. (2022) Live imaging of transcription sites using an elongating RNA polymerase II-specific probe. The Journal of cell biology. 1970 Jan 1; 221(2). PM ID: 34854870
  • Teixeira, A, et al. (2022) CelloSelect – A synthetic cellobiose metabolic pathway for selection of stable transgenic CHO cell lines. Metabolic Engineering. 1970 Jan 1; 70:23-30. Link: Metabolic Engineering
  • Rui, Y, et al. (2022) High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Science advances. 1970 Jan 1; 8(1):eabk2855. PM ID: 34985952
  • Vásquez-Limeta, A, et al. (2022) CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. The Journal of cell biology. 1970 Jan 1; 221(5). PM ID: 35404385
  • Su, CJ, et al. (2022) Ligand-receptor promiscuity enables cellular addressing. Cell systems. 1970 Jan 1;. PM ID: 35421362
  • Klumpe, HE, et al. (2022) The context-dependent, combinatorial logic of BMP signaling. Cell systems. 1970 Jan 1;. PM ID: 35421361
  • Kitano, H, Kawabe, Y & Kamihira, M. (2022) HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells. 1970 Jan 1; 11(7). PM ID: 35406758
  • Sugiman-Marangos, SN, et al. (2022) Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold. Communications biology. 1970 Jan 1; 5(1):375. PM ID: 35440624
  • Ma, X, et al. (2022) Validation of reliable safe harbor locus for efficient porcine transgenesis. Functional & integrative genomics. 1970 Jan 1;. PM ID: 35412198
  • Nishimura, K, et al. (2022) Rapid conversion of human induced pluripotent stem cells into dopaminergic neurons by inducible expression of two transcription factors. Stem cells and development. 1970 Jan 1;. PM ID: 35420042
  • Liu, Z, Ramirez, A & Liu, X. (2022) Live Cell Imaging of Spatiotemporal Ca2+ Fluctuation Responses to Anticancer Drugs. Methods in molecular biology (Clifton, N.J.). 1970 Jan 1; 2488:227-236. PM ID: 35347692
  • Dandridge, S. (2022) Honors Thesis: Defining the effect of zinc on the proliferation of MDA-MB-231 cells compared to MCF10A cells. Thesis. 1970 Jan 1;. Link: Thesis
  • Yang, D, et al. (2022) Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 1970 Jan 1; 185(11):1905-1923.e25. PM ID: 35523183
  • Biswas, S, et al. (2022) Long-term hepatitis B virus infection of rhesus macaques requires suppression of host immunity. Nature communications. 1970 Jan 1; 13(1):2995. PM ID: 35637225
  • Breau, KA, et al. (2022) Efficient transgenesis and homology-directed gene targeting in monolayers of primary human small intestinal and colonic epithelial stem cells. Stem cell reports. 1970 Jan 1;. PM ID: 35523179
  • Lensch, S, et al. (2022) Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife. 1970 Jan 1; 11. PM ID: 35678392
  • Gu, J, Sumer, H & Cromer, B. (2022) Efficient Generation of Stable Cell Lines with Inducible Neuronal Transgene Expression Using the piggyBac Transposon System. Methods in molecular biology (Clifton, N.J.). 1970 Jan 1; 2495:49-66. PM ID: 35696027
  • Wang, S, et al. (2021) Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell. 1970 Jan 1;. PM ID: 34133940
  • Ng, YH, et al. (2021) Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem cell reports. 1970 Jan 1;. PM ID: 34171286
  • Ukaji, T, et al. (2021) Novel knock-in mouse model for the evaluation of the therapeutic efficacy and toxicity of human podoplanin-targeting agents. Cancer science. 1970 Jan 1; 112(6):2299-2313. PM ID: 33735501
PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector $1,003.00

Products

Catalog Number Description Size Price Quantity Add to Cart
PBQM812A-1 PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector 10 µg $1003
- +

Overview

Overview

Robust, titratable gene expression delivered using the PiggyBac Transposon System

More than just easy, consistent transgenesis with PiggyBac, the PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector (Cat.# PBQM812A-1) adds in the robust and titratable gene expression control of SBI’s cumate-inducible expression system. Clone your gene-of-interest into the MCS for cumate-inducible expression, which you can quantitatively monitor with the co-expressed GFP. This vector also co-expresses the cumate repressor, CymR, and puromycin resistance from the EF1α promoter. PB-Cuo-MCS-IRES-GFP-EF1α-CymR-Puro Inducible cDNA Cloning and Expression Vector With the PiggyBac Transposon System, you can:

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements

Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a four-month, limited-use license to evaluate the technology.

For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Hera BioLabs, Inc.

How It Works

How It Works

The PiggyBac Transposon System’s Cut-and-Paste Mechanism

The efficient PiggyBac Transposon System uses a cut-and-paste mechanism to transfer DNA from the PiggyBac Vector into the genome. If only temporary genomic integration is desired, the Excision-only PiggyBac Transposase can be transiently expressed for footprint-free removal of the insert, resulting in reconstitution of the original genome sequence.

The PiggyBac Transposon System’s cut-and-paste mechanism

Figure 1. The PiggyBac Transposon System’s cut-and-paste mechanism.

  • The Super PiggyBac Transposase binds to specific inverted terminal repeats (ITRs) in the PiggyBac Cloning and Expression Vector and excises the ITRs and intervening DNA.
  • The Super PiggyBac Transposase inserts the ITR-Expression Cassette-ITR segment into the genome at TTAA sites.
  • The Excision-only Super PiggyBac Transposase can be used to remove the ITR-Expression Cassette-ITR segment from the genome, for footprint-free removal

Tightly-controlled, inducible gene expression

Get robust, titratable gene expression with low background using SBI’s cumate-inducible vectors. These vectors take advantage of CymR, a repressor that binds to cumate operator sequences (CuO) with high affinity in the absence of cumate, a non-toxic small molecule. Providing much lower background expression than similar systems, SBI’s cumate-inducible vectors can provide up to 32-fold induction of gene expression.How the cumate operator switch works

  • Robust—increase expression up to 32-fold
  • Adjustable—tune expression levels by titrating the amount of cumate
  • Reversible—turn expression on, then off, then on again
  • Powerful—suitable for in vivo applications

Supporting Data

Supporting Data

Tight expression control with low background

In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression

Figure 2. In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression.

The PiggyBac cumate switch is titratable and can be turned off

Figure 3. The PiggyBac cumate switch is titratable and can be turned off.

Citations

  • Uchino, S, et al. (2022) Live imaging of transcription sites using an elongating RNA polymerase II-specific probe. The Journal of cell biology. 1970 Jan 1; 221(2). PM ID: 34854870
  • Teixeira, A, et al. (2022) CelloSelect – A synthetic cellobiose metabolic pathway for selection of stable transgenic CHO cell lines. Metabolic Engineering. 1970 Jan 1; 70:23-30. Link: Metabolic Engineering
  • Rui, Y, et al. (2022) High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Science advances. 1970 Jan 1; 8(1):eabk2855. PM ID: 34985952
  • Vásquez-Limeta, A, et al. (2022) CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. The Journal of cell biology. 1970 Jan 1; 221(5). PM ID: 35404385
  • Su, CJ, et al. (2022) Ligand-receptor promiscuity enables cellular addressing. Cell systems. 1970 Jan 1;. PM ID: 35421362
  • Klumpe, HE, et al. (2022) The context-dependent, combinatorial logic of BMP signaling. Cell systems. 1970 Jan 1;. PM ID: 35421361
  • Kitano, H, Kawabe, Y & Kamihira, M. (2022) HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells. 1970 Jan 1; 11(7). PM ID: 35406758
  • Sugiman-Marangos, SN, et al. (2022) Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold. Communications biology. 1970 Jan 1; 5(1):375. PM ID: 35440624
  • Ma, X, et al. (2022) Validation of reliable safe harbor locus for efficient porcine transgenesis. Functional & integrative genomics. 1970 Jan 1;. PM ID: 35412198
  • Nishimura, K, et al. (2022) Rapid conversion of human induced pluripotent stem cells into dopaminergic neurons by inducible expression of two transcription factors. Stem cells and development. 1970 Jan 1;. PM ID: 35420042
  • Liu, Z, Ramirez, A & Liu, X. (2022) Live Cell Imaging of Spatiotemporal Ca2+ Fluctuation Responses to Anticancer Drugs. Methods in molecular biology (Clifton, N.J.). 1970 Jan 1; 2488:227-236. PM ID: 35347692
  • Dandridge, S. (2022) Honors Thesis: Defining the effect of zinc on the proliferation of MDA-MB-231 cells compared to MCF10A cells. Thesis. 1970 Jan 1;. Link: Thesis
  • Yang, D, et al. (2022) Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 1970 Jan 1; 185(11):1905-1923.e25. PM ID: 35523183
  • Biswas, S, et al. (2022) Long-term hepatitis B virus infection of rhesus macaques requires suppression of host immunity. Nature communications. 1970 Jan 1; 13(1):2995. PM ID: 35637225
  • Breau, KA, et al. (2022) Efficient transgenesis and homology-directed gene targeting in monolayers of primary human small intestinal and colonic epithelial stem cells. Stem cell reports. 1970 Jan 1;. PM ID: 35523179
  • Lensch, S, et al. (2022) Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife. 1970 Jan 1; 11. PM ID: 35678392
  • Gu, J, Sumer, H & Cromer, B. (2022) Efficient Generation of Stable Cell Lines with Inducible Neuronal Transgene Expression Using the piggyBac Transposon System. Methods in molecular biology (Clifton, N.J.). 1970 Jan 1; 2495:49-66. PM ID: 35696027
  • Wang, S, et al. (2021) Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell. 1970 Jan 1;. PM ID: 34133940
  • Ng, YH, et al. (2021) Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem cell reports. 1970 Jan 1;. PM ID: 34171286
  • Ukaji, T, et al. (2021) Novel knock-in mouse model for the evaluation of the therapeutic efficacy and toxicity of human podoplanin-targeting agents. Cancer science. 1970 Jan 1; 112(6):2299-2313. PM ID: 33735501