Cumate Solution for the PiggyBac Transposon System

Control the cumate-inducible promoter used on SBI’s PiggyBac Vectors with this ready-to-add 10,000x inducer solution
  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers

Products

Catalog Number Description Size Price Quantity Add to Cart
PBQM100A-1 Cumate Solution, high concentration, 10,000x for use with PiggyBac 500 µL $110
- +

Overview

Overview

The reagent behind tight, titratable gene expression

Prepared specifically for use with SBI’s inducible PiggyBac Vectors, the Cumate Solution for the PiggyBac Transposon System is a ready-to-add 10,000x inducer solution.

With the PiggyBac Transposon System, you can:

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a six-month, limited-use license to evaluate the technology.

For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Hera BioLabs, Inc.

How It Works

How It Works

Tightly-controlled, inducible gene expression

Get robust, titratable gene expression with low background using SBI’s cumate-inducible vectors. These vectors take advantage of CymR, a repressor that binds to cumate operator sequences (CuO) with high affinity in the absence of cumate, a non-toxic small molecule. Providing much lower background expression than similar systems, SBI’s cumate-inducible vectors can provide up to 32-fold induction of gene expression.

How the cumate operator switch works

  • Robust—increase expression up to 32-fold
  • Adjustable—tune expression levels by titrating the amount of cumate
  • Reversible—turn expression on, then off, then on again
  • Powerful—suitable for in vivo applications

Supporting Data

Supporting Data

Tight expression control with low background

In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression

Figure 2. In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression.

The PiggyBac cumate switch is titratable and can be turned off

Figure 3. The PiggyBac cumate switch is titratable and can be turned off.

FAQs

Resources

Citations

  • Brouwer, I, de Kort, MAC & Lenstra, TL. (2024) Measuring Transcription Dynamics of Individual Genes Inside Living Cells. Methods in molecular biology (Clifton, N.J.). 2024; 2694:235-265. PM ID: 37824008
  • Matta, SK, et al. (2024) Genome-wide and targeted CRISPR screens identify RNF213 as a mediator of interferon gamma-dependent pathogen restriction in human cells. Proceedings of the National Academy of Sciences of the United States of America. 2024; 121(1):e2315865120. PM ID: 38147552
  • Cho, MG, et al. (2024) MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature. 2024; 625(7995):585-592. PM ID: 38200309
  • Du, M, et al. (2024) Direct observation of a condensate effect on super-enhancer controlled gene bursting. Cell. 2024; 187(2):331-344.e17. PM ID: 38194964
  • Schmitt, J, et al. (2024) Repurposing an endogenous degradation domain for antibody-mediated disposal of cell-surface proteins. EMBO reports. 2024;. PM ID: 38287192
  • Byrnes, AE, et al. (2024) A fluorescent splice-switching mouse model enables high-throughput, sensitive quantification of antisense oligonucleotide delivery and activity. Cell reports methods. 2024; 4(1):100673. PM ID: 38171361
  • Daiki, K, et al. (2024) Blood Endocan as a Biomarker for Breast Cancer Recurrence. Preprint. 2024;. Link: Preprint
  • Koeppel, J, et al. (2024) Randomizing the human genome by engineering recombination between repeat elements. bioRxiv. 2024;. Link: bioRxiv
  • Kortleve, D, et al. (2024) TCR-engineered T-cells directed against Ropporin-1 constitute a safe and effective treatment for triple-negative breast cancer in near-clinical models. bioRxiv. 2024;. Link: bioRxiv
  • Haakonsen, DL, et al. (2024) Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature. 2024; 626(8000):874-880. PM ID: 38297121
  • Gupta, P, et al. (2024) Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nature communications. 2024; 15(1):1794. PM ID: 38413594
  • Company, C, et al. (2024) Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and state changes. Nature communications. 2024; 15(1):897. PM ID: 38316783
  • Yang, L, et al. (2024) Uncovering receptor-ligand interactions using a high-avidity CRISPR activation screening platform. Science advances. 2024; 10(7):eadj2445. PM ID: 38354234
  • Kubara, K, et al. (2024) Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines. Molecular therapy : the journal of the American Society of Gene Therapy. 2024;. PM ID: 38243602
  • Ng-Blichfeldt, J, et al. (2024) Identification of a core transcriptional program driving the human renal mesenchymal-to-epithelial transition. Developmental Cell. 2024;. Link: Developmental Cell
  • Yang, J, Cook, L & Chen, Z. (2024) Systematic evaluation of retroviral LTRs as cis-regulatory elements in mouse embryos. Cell reports. 2024; 43(3):113775. PM ID: 38381606
  • Taglini, F, et al. (2024) DNMT3B PWWP mutations cause hypermethylation of heterochromatin. EMBO reports. 2024;. PM ID: 38291337
  • Tanase-Nakao, K, et al. (2024) Genotype-Phenotype Correlations in Thirty Japanese Patients with Congenital Hypothyroidism Attributable to TG Defects. The Journal of clinical endocrinology and metabolism. 2024;. PM ID: 38373250
  • Alsouri, S, et al. (2024) Actinin-4 controls survival signaling in B cells by limiting the lateral mobility of B-cell antigen receptors. European journal of immunology. 2024;:e2350774. PM ID: 38299456
  • Ke, X, et al. (2024) Establishment of a novel minigenome system for the identification of drugs targeting Nipah virus replication. The Journal of general virology. 2024; 105(1). PM ID: 38180473

Products

Catalog Number Description Size Price Quantity Add to Cart
PBQM100A-1 Cumate Solution, high concentration, 10,000x for use with PiggyBac 500 µL $110
- +

Overview

Overview

The reagent behind tight, titratable gene expression

Prepared specifically for use with SBI’s inducible PiggyBac Vectors, the Cumate Solution for the PiggyBac Transposon System is a ready-to-add 10,000x inducer solution.

With the PiggyBac Transposon System, you can:

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a six-month, limited-use license to evaluate the technology.

For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Hera BioLabs, Inc.

How It Works

How It Works

Tightly-controlled, inducible gene expression

Get robust, titratable gene expression with low background using SBI’s cumate-inducible vectors. These vectors take advantage of CymR, a repressor that binds to cumate operator sequences (CuO) with high affinity in the absence of cumate, a non-toxic small molecule. Providing much lower background expression than similar systems, SBI’s cumate-inducible vectors can provide up to 32-fold induction of gene expression.

How the cumate operator switch works

  • Robust—increase expression up to 32-fold
  • Adjustable—tune expression levels by titrating the amount of cumate
  • Reversible—turn expression on, then off, then on again
  • Powerful—suitable for in vivo applications

Supporting Data

Supporting Data

Tight expression control with low background

In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression

Figure 2. In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression.

The PiggyBac cumate switch is titratable and can be turned off

Figure 3. The PiggyBac cumate switch is titratable and can be turned off.

FAQs

Citations

  • Brouwer, I, de Kort, MAC & Lenstra, TL. (2024) Measuring Transcription Dynamics of Individual Genes Inside Living Cells. Methods in molecular biology (Clifton, N.J.). 2024; 2694:235-265. PM ID: 37824008
  • Matta, SK, et al. (2024) Genome-wide and targeted CRISPR screens identify RNF213 as a mediator of interferon gamma-dependent pathogen restriction in human cells. Proceedings of the National Academy of Sciences of the United States of America. 2024; 121(1):e2315865120. PM ID: 38147552
  • Cho, MG, et al. (2024) MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature. 2024; 625(7995):585-592. PM ID: 38200309
  • Du, M, et al. (2024) Direct observation of a condensate effect on super-enhancer controlled gene bursting. Cell. 2024; 187(2):331-344.e17. PM ID: 38194964
  • Schmitt, J, et al. (2024) Repurposing an endogenous degradation domain for antibody-mediated disposal of cell-surface proteins. EMBO reports. 2024;. PM ID: 38287192
  • Byrnes, AE, et al. (2024) A fluorescent splice-switching mouse model enables high-throughput, sensitive quantification of antisense oligonucleotide delivery and activity. Cell reports methods. 2024; 4(1):100673. PM ID: 38171361
  • Daiki, K, et al. (2024) Blood Endocan as a Biomarker for Breast Cancer Recurrence. Preprint. 2024;. Link: Preprint
  • Koeppel, J, et al. (2024) Randomizing the human genome by engineering recombination between repeat elements. bioRxiv. 2024;. Link: bioRxiv
  • Kortleve, D, et al. (2024) TCR-engineered T-cells directed against Ropporin-1 constitute a safe and effective treatment for triple-negative breast cancer in near-clinical models. bioRxiv. 2024;. Link: bioRxiv
  • Haakonsen, DL, et al. (2024) Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature. 2024; 626(8000):874-880. PM ID: 38297121
  • Gupta, P, et al. (2024) Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nature communications. 2024; 15(1):1794. PM ID: 38413594
  • Company, C, et al. (2024) Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and state changes. Nature communications. 2024; 15(1):897. PM ID: 38316783
  • Yang, L, et al. (2024) Uncovering receptor-ligand interactions using a high-avidity CRISPR activation screening platform. Science advances. 2024; 10(7):eadj2445. PM ID: 38354234
  • Kubara, K, et al. (2024) Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines. Molecular therapy : the journal of the American Society of Gene Therapy. 2024;. PM ID: 38243602
  • Ng-Blichfeldt, J, et al. (2024) Identification of a core transcriptional program driving the human renal mesenchymal-to-epithelial transition. Developmental Cell. 2024;. Link: Developmental Cell
  • Yang, J, Cook, L & Chen, Z. (2024) Systematic evaluation of retroviral LTRs as cis-regulatory elements in mouse embryos. Cell reports. 2024; 43(3):113775. PM ID: 38381606
  • Taglini, F, et al. (2024) DNMT3B PWWP mutations cause hypermethylation of heterochromatin. EMBO reports. 2024;. PM ID: 38291337
  • Tanase-Nakao, K, et al. (2024) Genotype-Phenotype Correlations in Thirty Japanese Patients with Congenital Hypothyroidism Attributable to TG Defects. The Journal of clinical endocrinology and metabolism. 2024;. PM ID: 38373250
  • Alsouri, S, et al. (2024) Actinin-4 controls survival signaling in B cells by limiting the lateral mobility of B-cell antigen receptors. European journal of immunology. 2024;:e2350774. PM ID: 38299456
  • Ke, X, et al. (2024) Establishment of a novel minigenome system for the identification of drugs targeting Nipah virus replication. The Journal of general virology. 2024; 105(1). PM ID: 38180473