PiggyBac qPCR Copy Number Kit

Find out how many copies of your PiggyBac insert have been integrated into the genome with this accurate, qPCR-based kit

Catalog Number
Add to Cart

piggyBac qPCR copy number kit, 20 reactions  

20 Reactions
$ 253
Contact Us Speak to a specialist


Confidently count your PiggyBac inserts

When you need to know how many PiggyBac integration events have happened, turn to SBI’s PiggyBac qPCR Copy Number Kit. This kit uses qPCR to measure the number of PiggyBac inserts relative to a specific genomic locus—the UCR1 element—with the PiggyBac insert copy number calculated using the cycle threshold (Ct) values of the UCR1 signal relative to the PiggyBac insert signal.

The PiggyBac qPCR Copy Number Kit comes with enough reagents—UCR1 primers, PiggyBac primers, and cell lysis buffer—for twenty copy number determinations, and is compatible with all of SBI’s PiggyBac Vectors.

NOTE: Your cells must be passaged at least once before performing this copy number measurement to ensure that residual, non-integrated piggyBac transposon plasmid does not interfere with the qPCR reaction.

How It Works

Calculate PiggyBac insert copy number

The PiggyBac qPCR Copy Number Kit provides robust PiggyBac insert copy number determination. To calculate the PiggyBac insert copy number from the Ct values:

  1. Calculate the average Cts for the PiggyBac inserts and for the UCR1 loci (there are two UCR1 elements per genome)
  2. The copy number is the ΔΔCt/2—the ΔΔCt value must be divided by two to account for the two UCR1 elements:

ΔΔCt = 2-((average PiggyBac insert Ct) – (average UCR1 Ct))
PiggyBac insert copy number = ΔΔCt/2

You can change the number of PiggyBac insertions by adjusting the ratio of PiggyBac Vector to Super PiggyBac Transposase Expression Vector (Cat.# PB210PA-1).

Supporting Data

Robust PiggyBac insert copy number determination

Example PiggyBac qPCR Copy Number Kit data from a PiggyBac Vector titration study—the PiggyBac insert copy number can be changed by adjusting the ratio of PiggyBac Vector to Super PiggyBac Transposase Expression Vector:

[table “” not found /]

Adjust the PiggyBac insert copy number by changing the ratio of PiggyBac Vector to Super PiggyBac Transposase

Figure 1. Adjust the PiggyBac insert copy number by changing the ratio of PiggyBac Vector to Super PiggyBac Transposase. To achieve the indicated ratio of PiggyBac Vector to Super PiggyBac Transposase Expression Vector, amount of PiggyBac Vector added was 100 ng, 300 ng, 500 ng, 700 ng, and 1,000 ng, respectively, while the amount of Super PiggyBac Transposase Expression Vector was held constant at 100 ng.


  • Møller, HD, et al. (2018) CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res.. 2018 Dec 14; 46(22):e131. PM ID: 30551175
  • Shinmura, K, et al. (2018) Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic. Biol. Med.. 2018 Dec 12; 131:264-273. PM ID: 30552997
  • Fujii, M, et al. (2018) Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. Cell Stem Cell. 2018 Dec 6; 23(6):787-793.e6. PM ID: 30526881
  • Lee, JH, et al. (2018) Forkhead Box O3 promotes cell proliferation and inhibits myotube differentiation in chicken myoblast cells. Br. Poult. Sci.. 2018 Nov 14;. PM ID: 30427204
  • Andres, SF, et al. (2018) IMP1 3′ UTR shortening enhances metastatic burden in colorectal cancer. Carcinogenesis. 2018 Nov 8;. PM ID: 30407516
  • Schertzer, M, et al. (2018) A piggyBac-based toolkit for inducible genome editing in mammalian cells. bioRxiv. 2018 Oct 20;. Link: bioRxiv
  • Han, Y, et al. (2018) Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn2+ allows tracking of lysosomal Zn2+ pools. Sci Rep. 2018 Oct 9; 8(1):15034. PM ID: 30302024
  • Rodriguez-Rodriguez, J, et al. (2018) Distinct Roles of RZZ and Bub1-KNL1 in Mitotic Checkpoint Signaling and Kinetochore Expansion. Current Biology. 2018 Oct 1;. Link: Current Biology
  • Hunter, M, et al. (2018) Optimization of Protein Expression in Mammalian Cells. Curr Protoc Protein Sci. 2018 Sep 28;:e77. PM ID: 30265450
  • Kim, TH & Zhou, H. (2018) Overexpression of Chicken IRF7 Increased Viral Replication and Programmed Cell Death to the Avian Influenza Virus Infection Through TGF-Beta/FoxO Signaling Axis in DF-1. Front Genet. 2018 Sep 25; 9:415. PM ID: 30356848
  • Wang, Y, et al. (2018) The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation. FASEB J.. 2018 Sep 25;:fj201800343R. PM ID: 30252535
  • Brasino, M, et al. (2018) Anti-EGFR Affibodies with Site-Specific Photo-Cross-Linker Incorporation Show Both Directed Target-Specific Photoconjugation and Increased Retention in Tumors. J. Am. Chem. Soc.. 2018 Sep 19; 140(37):11820-11828. PM ID: 30203972
  • Kirk, JM, et al. (2018) Functional classification of long non-coding RNAs by k-mer content. Nat. Genet.. 2018 Sep 17;. PM ID: 30224646
  • Klein, CH, et al. (2018) PDEδ inhibition impedes the proliferation and survival of human colorectal cancer cell lines harboring oncogenic KRas. Int. J. Cancer. 2018 Sep 8;. PM ID: 30194764
  • Wei, Z, et al. (2018) Fam198a, a member of secreted kinase, secrets through caveolae biogenesis pathway. Acta Biochim. Biophys. Sin. (Shanghai). 2018 Sep 5;. PM ID: 30188967
  • Strubberg, AM, et al. (2018) The Zinc Finger Transcription Factor PLAGL2 Enhances Stem Cell Fate and Activates Expression of ASCL2 in Intestinal Epithelial Cells. Stem Cell Reports. 2018 Aug 14; 11(2):410-424. PM ID: 30017821
  • Gombodorj, N, et al. (2018) Correlation between high FBXW7 expression in pretreatment biopsy specimens and good response to chemoradiation therapy in patients with locally advanced esophageal cancer: A retrospective study. J Surg Oncol. 2018 Aug 11;. PM ID: 30098297
  • Nanki, K, et al. (2018) Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell. 2018 Aug 9; 174(4):856-869.e17. PM ID: 30096312
  • Fuentes, DR, Swigut, T & Wysocka, J. (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife. 2018 Aug 2; 7. PM ID: 30070637
  • Mossine, VV, et al. (2018) Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells. Antimicrob. Agents Chemother.. 2018 Aug 1; 62(8). PM ID: 29784845