Cumate Solution for the PiggyBac Transposon System

Control the cumate-inducible promoter used on SBI’s PiggyBac Vectors with this ready-to-add 10,000x inducer solution

Description
Size
Catalog Number
Price
Quantity
Add to Cart

Cumate Solution, high concentration, 10,000x for use with PiggyBac

500 µL
PBQM100A-1
$ 98
Contact Us Speak to a specialist
1-888-266-5066

Overview

The reagent behind tight, titratable gene expression

Prepared specifically for use with SBI’s inducible PiggyBac Vectors, the Cumate Solution for the PiggyBac Transposon System is a ready-to-add 10,000x inducer solution.

With the PiggyBac Transposon System, you can:

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements
Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a six-month, limited-use license to test the technology.
For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Transposagen Biopharmaceuticals, Inc.

How It Works

Tightly-controlled, inducible gene expression

Get robust, titratable gene expression with low background using SBI’s cumate-inducible vectors. These vectors take advantage of CymR, a repressor that binds to cumate operator sequences (CuO) with high affinity in the absence of cumate, a non-toxic small molecule. Providing much lower background expression than similar systems, SBI’s cumate-inducible vectors can provide up to 32-fold induction of gene expression.

How the cumate operator switch works

  • Robust—increase expression up to 32-fold
  • Adjustable—tune expression levels by titrating the amount of cumate
  • Reversible—turn expression on, then off, then on again
  • Powerful—suitable for in vivo applications

Supporting Data

Tight expression control with low background

In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression

Figure 2. In the absence of cumate, the cumate-inducible PiggyBac Vector shows undetectable levels of expression.

The PiggyBac cumate switch is titratable and can be turned off

Figure 3. The PiggyBac cumate switch is titratable and can be turned off.


Citations

  • Møller, HD, et al. (2018) CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res.. 2018 Dec 14; 46(22):e131. PM ID: 30551175
  • Shinmura, K, et al. (2018) Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic. Biol. Med.. 2018 Dec 12; 131:264-273. PM ID: 30552997
  • Fujii, M, et al. (2018) Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. Cell Stem Cell. 2018 Dec 6; 23(6):787-793.e6. PM ID: 30526881
  • Lee, JH, et al. (2018) Forkhead Box O3 promotes cell proliferation and inhibits myotube differentiation in chicken myoblast cells. Br. Poult. Sci.. 2018 Nov 14;. PM ID: 30427204
  • Andres, SF, et al. (2018) IMP1 3′ UTR shortening enhances metastatic burden in colorectal cancer. Carcinogenesis. 2018 Nov 8;. PM ID: 30407516
  • Schertzer, M, et al. (2018) A piggyBac-based toolkit for inducible genome editing in mammalian cells. bioRxiv. 2018 Oct 20;. Link: bioRxiv
  • Han, Y, et al. (2018) Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn2+ allows tracking of lysosomal Zn2+ pools. Sci Rep. 2018 Oct 9; 8(1):15034. PM ID: 30302024
  • Rodriguez-Rodriguez, J, et al. (2018) Distinct Roles of RZZ and Bub1-KNL1 in Mitotic Checkpoint Signaling and Kinetochore Expansion. Current Biology. 2018 Oct 1;. Link: Current Biology
  • Hunter, M, et al. (2018) Optimization of Protein Expression in Mammalian Cells. Curr Protoc Protein Sci. 2018 Sep 28;:e77. PM ID: 30265450
  • Kim, TH & Zhou, H. (2018) Overexpression of Chicken IRF7 Increased Viral Replication and Programmed Cell Death to the Avian Influenza Virus Infection Through TGF-Beta/FoxO Signaling Axis in DF-1. Front Genet. 2018 Sep 25; 9:415. PM ID: 30356848
  • Wang, Y, et al. (2018) The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation. FASEB J.. 2018 Sep 25;:fj201800343R. PM ID: 30252535
  • Brasino, M, et al. (2018) Anti-EGFR Affibodies with Site-Specific Photo-Cross-Linker Incorporation Show Both Directed Target-Specific Photoconjugation and Increased Retention in Tumors. J. Am. Chem. Soc.. 2018 Sep 19; 140(37):11820-11828. PM ID: 30203972
  • Kirk, JM, et al. (2018) Functional classification of long non-coding RNAs by k-mer content. Nat. Genet.. 2018 Sep 17;. PM ID: 30224646
  • Klein, CH, et al. (2018) PDEδ inhibition impedes the proliferation and survival of human colorectal cancer cell lines harboring oncogenic KRas. Int. J. Cancer. 2018 Sep 8;. PM ID: 30194764
  • Wei, Z, et al. (2018) Fam198a, a member of secreted kinase, secrets through caveolae biogenesis pathway. Acta Biochim. Biophys. Sin. (Shanghai). 2018 Sep 5;. PM ID: 30188967
  • Strubberg, AM, et al. (2018) The Zinc Finger Transcription Factor PLAGL2 Enhances Stem Cell Fate and Activates Expression of ASCL2 in Intestinal Epithelial Cells. Stem Cell Reports. 2018 Aug 14; 11(2):410-424. PM ID: 30017821
  • Gombodorj, N, et al. (2018) Correlation between high FBXW7 expression in pretreatment biopsy specimens and good response to chemoradiation therapy in patients with locally advanced esophageal cancer: A retrospective study. J Surg Oncol. 2018 Aug 11;. PM ID: 30098297
  • Nanki, K, et al. (2018) Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell. 2018 Aug 9; 174(4):856-869.e17. PM ID: 30096312
  • Fuentes, DR, Swigut, T & Wysocka, J. (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife. 2018 Aug 2; 7. PM ID: 30070637
  • Mossine, VV, et al. (2018) Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells. Antimicrob. Agents Chemother.. 2018 Aug 1; 62(8). PM ID: 29784845