Excision-only PiggyBac Transposase Expression Vector

Remove a PiggyBac insert from the genome and restore the original genomic sequence with this Excision-only PiggyBac Transposase

Description
Size
Catalog Number
Price
Quantity
Add to Cart

Excision only piggyBac Transposase expression vector

10 µg
PB220PA-1
$ 412
Contact Us Speak to a specialist
1-888-266-5066

Overview

Reversible transgenesis that leaves no trace behind

One of the advantages of the PiggyBac Transposon System* is the reversibility of the integration event. With the Excision-only PiggyBac Transposase, delivered by transient transfection of the Exicison-only PiggyBac Transposase Expression Vector, you can remove any DNA integrated into the genome using the PiggyBac Transposon System. After removal of the PiggyBac insert, the genomic DNA is restored to the original sequence with no residual PiggyBac sequences left behind, resulting in a truly footprint-free removal.

Both the Excision-only PiggyBac Transposase and the Super PiggyBac Transposase (Cat.# PB210PA-1) recognize transposon-specific inverted terminal repeats (ITRs). While the Super PiggyBac Transposase has both excision and integration activities that enable the enzyme to mediate removal of the ITRs and intervening DNA from one location (the vector) and insert that DNA fragment into another location (the genome), the Excision-only PiggyBac Transposase only has the excision activity. Thus, the Excision-only PiggyBac Transposase can be used to remove DNA segments from the genome that are bordered by the PiggyBac transposon ITRs.

With the PiggyBac Transposon System, you can:

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements
Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a six-month, limited-use license to test the technology.
For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Transposagen Biopharmaceuticals, Inc.

How It Works

The PiggyBac Transposon System’s Cut-and-Paste Mechanism

The efficient PiggyBac Transposon System uses a cut-and-paste mechanism to transfer DNA from the PiggyBac Vector into the genome. If only temporary genomic integration is desired, the Excision-only PiggyBac Transposase can be transiently expressed for footprint-free removal of the insert, resulting in reconstitution of the original genome sequence.

The PiggyBac Transposon System’s cut-and-paste mechanism

Figure 1. The PiggyBac Transposon System’s cut-and-paste mechanism.

  • The Super PiggyBac Transposase binds to specific inverted terminal repeats (ITRs) in the PiggyBac Cloning and Expression Vector and excises the ITRs and intervening DNA.
  • The Super PiggyBac Transposase inserts the ITR-Expression Cassette-ITR segment into the genome at TTAA sites.
  • The Excision-only Super PiggyBac Transposase can be used to remove the ITR-Expression Cassette-ITR segment from the genome, for footprint-free removal

Supporting Data

Reverse transgenesis with the PiggyBac Transposon System’s footprint-free excision process

SBI’s Excision-only PiggyBac Transposase is integrase-deficient but excision capable for reversible transgenesis

Figure 2. SBI’s Excision-only PiggyBac Transposase is integrase-deficient but excision capable for reversible transgenesis. (Left panels) Comparison of the integration abilities of the Super PiggyBac Transposase (Cat.# PB210PA-1) to the Excision-only PiggyBac Transposase upon co-transfection with a GFP-expressing PiggyBac Vector. The very low number of GFP-positive cells in the sample co-transfected with Excision-only Transposase versus the numerous GFP-positive cells in the sample co-transfected with the Super PiggyBac Transposase demonstrate the poor integration abilities of the Excision-only enzyme. (Right panels) We inserted a GFP expression cassette into the genome, and then inactivated GFP expression by disrupting the open reading frame with a PiggyBac transposon. Successful use of the Excision-only PiggyBac Transposase restores GFP function, leading to GFP-positive cells. Restoration of GFP fluorescence also demonstrates the seamlessness of excision—the GFP coding region would remain disrupted if the transposon sequences did not get completely removed.


Citations

  • Møller, HD, et al. (2018) CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res.. 2018 Dec 14; 46(22):e131. PM ID: 30551175
  • Shinmura, K, et al. (2018) Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic. Biol. Med.. 2018 Dec 12; 131:264-273. PM ID: 30552997
  • Fujii, M, et al. (2018) Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. Cell Stem Cell. 2018 Dec 6; 23(6):787-793.e6. PM ID: 30526881
  • Lee, JH, et al. (2018) Forkhead Box O3 promotes cell proliferation and inhibits myotube differentiation in chicken myoblast cells. Br. Poult. Sci.. 2018 Nov 14;. PM ID: 30427204
  • Andres, SF, et al. (2018) IMP1 3′ UTR shortening enhances metastatic burden in colorectal cancer. Carcinogenesis. 2018 Nov 8;. PM ID: 30407516
  • Schertzer, M, et al. (2018) A piggyBac-based toolkit for inducible genome editing in mammalian cells. bioRxiv. 2018 Oct 20;. Link: bioRxiv
  • Han, Y, et al. (2018) Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn2+ allows tracking of lysosomal Zn2+ pools. Sci Rep. 2018 Oct 9; 8(1):15034. PM ID: 30302024
  • Rodriguez-Rodriguez, J, et al. (2018) Distinct Roles of RZZ and Bub1-KNL1 in Mitotic Checkpoint Signaling and Kinetochore Expansion. Current Biology. 2018 Oct 1;. Link: Current Biology
  • Hunter, M, et al. (2018) Optimization of Protein Expression in Mammalian Cells. Curr Protoc Protein Sci. 2018 Sep 28;:e77. PM ID: 30265450
  • Kim, TH & Zhou, H. (2018) Overexpression of Chicken IRF7 Increased Viral Replication and Programmed Cell Death to the Avian Influenza Virus Infection Through TGF-Beta/FoxO Signaling Axis in DF-1. Front Genet. 2018 Sep 25; 9:415. PM ID: 30356848
  • Wang, Y, et al. (2018) The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation. FASEB J.. 2018 Sep 25;:fj201800343R. PM ID: 30252535
  • Brasino, M, et al. (2018) Anti-EGFR Affibodies with Site-Specific Photo-Cross-Linker Incorporation Show Both Directed Target-Specific Photoconjugation and Increased Retention in Tumors. J. Am. Chem. Soc.. 2018 Sep 19; 140(37):11820-11828. PM ID: 30203972
  • Kirk, JM, et al. (2018) Functional classification of long non-coding RNAs by k-mer content. Nat. Genet.. 2018 Sep 17;. PM ID: 30224646
  • Klein, CH, et al. (2018) PDEδ inhibition impedes the proliferation and survival of human colorectal cancer cell lines harboring oncogenic KRas. Int. J. Cancer. 2018 Sep 8;. PM ID: 30194764
  • Wei, Z, et al. (2018) Fam198a, a member of secreted kinase, secrets through caveolae biogenesis pathway. Acta Biochim. Biophys. Sin. (Shanghai). 2018 Sep 5;. PM ID: 30188967
  • Strubberg, AM, et al. (2018) The Zinc Finger Transcription Factor PLAGL2 Enhances Stem Cell Fate and Activates Expression of ASCL2 in Intestinal Epithelial Cells. Stem Cell Reports. 2018 Aug 14; 11(2):410-424. PM ID: 30017821
  • Gombodorj, N, et al. (2018) Correlation between high FBXW7 expression in pretreatment biopsy specimens and good response to chemoradiation therapy in patients with locally advanced esophageal cancer: A retrospective study. J Surg Oncol. 2018 Aug 11;. PM ID: 30098297
  • Nanki, K, et al. (2018) Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell. 2018 Aug 9; 174(4):856-869.e17. PM ID: 30096312
  • Fuentes, DR, Swigut, T & Wysocka, J. (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife. 2018 Aug 2; 7. PM ID: 30070637
  • Mossine, VV, et al. (2018) Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells. Antimicrob. Agents Chemother.. 2018 Aug 1; 62(8). PM ID: 29784845