Harnessing innovation to drive discoveries

Quick Order|Contact us| CUSTOMER LOGIN

888.266.5066 (Toll Free)|Fax: 650.968.2277

PinPoint Targeted
Integration System

Efficiently create isogenic stable cell lines

PinPoint System

  • Create stable isogenic cell lines at defined loci
  • High efficiency insertion with no size limit
  • Avoid gene integration site variation
  • High-throughput cell line engineering

The PinPoint Targeted Integration System

The PinPoint Targeted Integration system allows users to easily and efficiently create isogenic stable cell lines in mammalian and other cell types. Custom gene expression cassettes can be engineered into target genomes using the unique PinPoint integrase with site-specific control. This technology enables the generation of platform cell lines which can be used to routinely knock-in different transgenes and reporters at the same genetic locus in cells with the same genetic background. This level of targeting control allows for the study of phenotypic effects free from context and positional variations, which results in more accurate genotype to phenotype correlations. The PinPoint integrase can be used in combination with TALEN and Cas9 systems to provide high-throughput cell line engineering anywhere in the genome.

How the PinPoint system works

The PinPoint system is a two-step approach for engineering of target cells with an optional third step for selection cassette removal by Cre resolvase. The first step involves insertion of a plasmid bearing the PinPoint placement site via transfection into the target cell genome. This can be done using two distinct approaches: i) the PinPoint-FC system that involves the well-characterized phiC31 integrase system or ii) the PinPoint-HR system that uses either TALE-Nuclease or Cas9 genome engineering tools to induce a double-stranded DNA break in the genome and insertion of the PinPoint placement site by homology-directed recombination (HDR) in a site-specific manner.

The second part of the PinPoint system relies on the introduction of a donor vector containing your desired gene cassette insert, which is integrated into the placed PinPoint site using a hyperspecific and efficient PinPoint integrase. The PinPoint integrase catalyzes the attB x attP reaction between the placed site (attP) and the attB site in the donor vector to insert the donor vector at the placed site each and every targeting event.

The third optional step invloves the removal of the entire backbone (excluding the insert and its promoter) using the well-characterized Cre/LoxP reaction leaving only the promoter/insert combination (and a single LoxP site) in the genome.